MicroRNA-223 reversibly regulates erythroid and megakaryocytic differentiation of K562 cells

نویسندگان

  • Jin-Yun Yuan
  • Fang Wang
  • Jia Yu
  • Gui-Hua Yang
  • Xiao-Ling Liu
  • Jun-Wu Zhang
چکیده

MicroRNAs (miRNAs) are thought to modulate a variety of cellular events. Several studies have revealed the functions of miR-223 in granulopoiesis. Here we analysed miR-223 expression in various human tissues, blood and leukaemia cells, and focused on its role in K562 erythroid and megakaryocytic differentiation. MiR-223 was detected not only in granulocytes but also in erythroid cells. In K562 cells, expression of miR-223 was down-regulated during haemin-induced erythroid differentiation but up-regulated during phorbol myristate acetate (PMA)-induced megakaryocytic differentiation. The overexpression of miR-223 resulted in significant decrease of gamma-globin mRNA and the fraction of benzidine-positive cells in K562 cells, suggesting a suppressive effect of miR-223 on erythroid differentiation. Peaks corresponding to 4N cells in stable transfectants overexpressing miR-223 were higher than that in control K562 cells during megakaryocytic differentiation, indicating that miR-223 increases megakaryocytic differentiation. The expression of LIM domain only 2 (LMO2) reporter was suppressed in NIH-3T3 when the expression of miR-223 was enforced by both the luciferase and fluorescence system. Furthermore, LMO2 mRNA and protein levels were significantly decreased in stable K562 transfectants overexpressing miR-223. These results indicate that LMO2 is a direct target of miR-223. Thus, our results suggest that miR-223 reversibly regulates erythroid and megakaryocytic differentiation of K562 cells via down-modulation of LMO2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of THAP11 on Erythroid Differentiation and Megakaryocytic Differentiation of K562 Cells

Hematopoiesis is a complex process regulated by sets of transcription factors in a stage-specific and context-dependent manner. THAP11 is a transcription factor involved in cell growth, ES cell pluripotency, and embryogenesis. Here we showed that THAP11 was down-regulated during erythroid differentiation but up-regulated during megakaryocytic differentiation of cord blood CD34+ cells. Overexpre...

متن کامل

Suppression of erythroid but not megakaryocytic differentiation of human K562 erythroleukemic cells by notch-1.

The Notch signal transduction pathway is a highly conserved regulatory system that controls multiple developmental processes. We have established an erythroleukemia cell model to study how Notch regulates cell fate and erythroleukemic cell differentiation. K562 and HEL cells expressed the Notch-1 receptor and the Notch ligand Jagged-1. The stable expression of the constitutively active intracel...

متن کامل

MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis.

BACKGROUND MicroRNAs are small non-coding RNAs that regulate gene expression through mRNA degradation or translational inhibition. MicroRNAs are emerging as key regulators of normal hematopoiesis and hematologic malignancies. Several miRNAs are differentially expressed during hematopoiesis and their specific expression regulates key functional proteins involved in hematopoietic lineage differen...

متن کامل

Notch signals inhibit the development of erythroid/megakaryocytic cells by suppressing GATA-1 activity through the induction of HES1.

The effects of Notch signals on the erythroid/megakaryocytic differentiation of hematopoietic cells were examined. Activation of Notch signals by the intracellular Notch1 or an estradiol-inducible form of Notch1/ER suppressed the expression of the erythroid marker glycophorin A in an erythroid/megakaryocytic cell line K562. Although Mock-transfected K562 cells underwent megakaryocytic different...

متن کامل

Differential expression of the Kell blood group and CD10 antigens: two related membrane metallopeptidases during differentiation of K562 cells by phorbol ester and hemin.

The erythroleukemic cell line K562 can undergo further differentiation in erythroid or megakaryocytic lineage depending on the nature of the stimulus. Phorbol ester (PMA) stimulates megakaryocytic development whereas hemin promotes erythroid differentiation of these cells. We have examined the effect of PMA and hemin on the expression of the Kell blood group and CD10 antigens, two related prote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2009